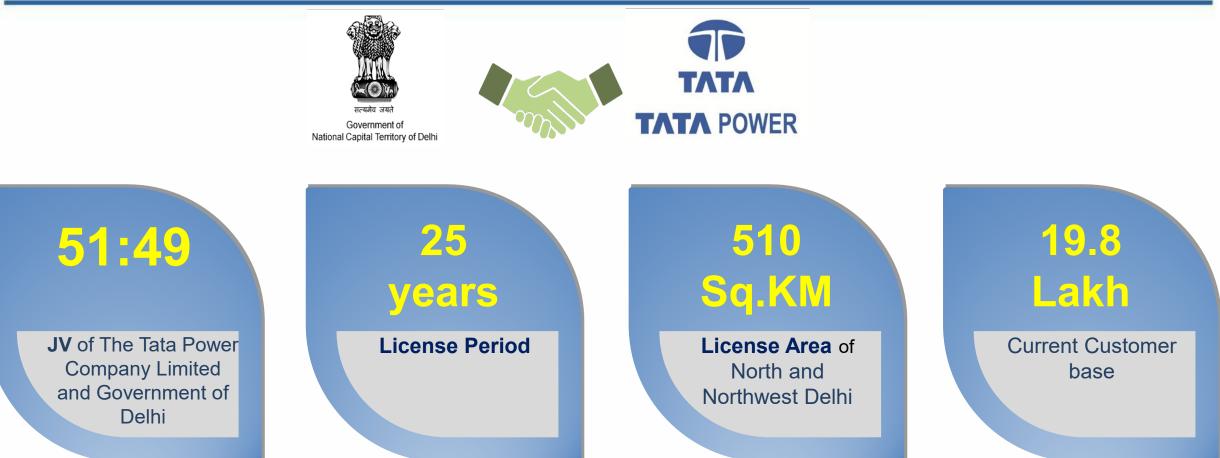


Best practices for the requalification of energy systems for the energy transition


Tuesday, September 12, 2023

Subhadip Ray Chaudhari Head - Meter Management & AMI Applications

# **About Tata Power-DDL**



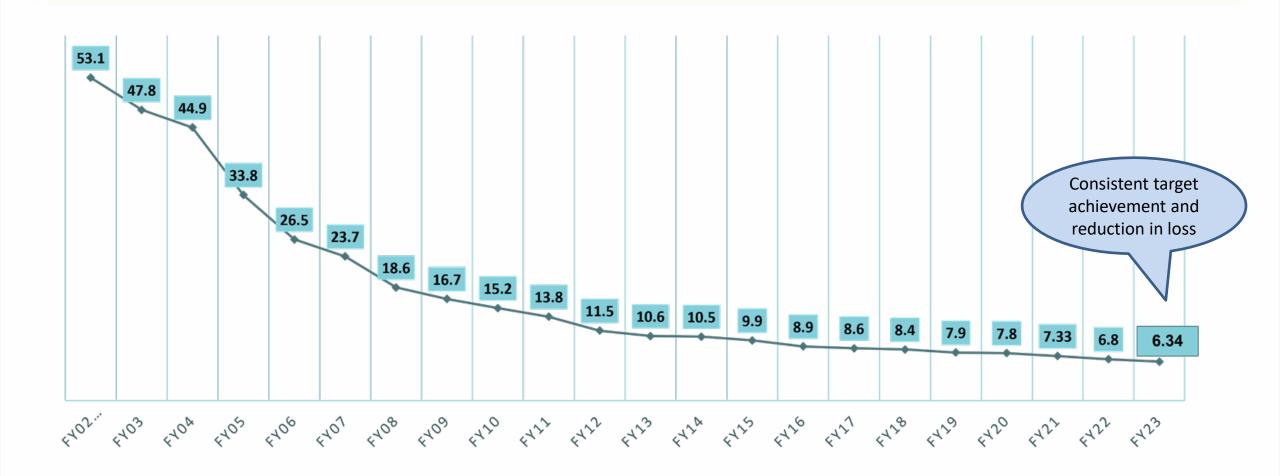
2



TATA Power-DDL is an ISO 9001 (Quality Management Systems), ISO 14001 (Environmental Management Systems), ISO 45001 (Occupational Health and Safety), ISO 22301(Security and Resilience), ISO 27001(Information Security Management), ISO 31000 (Risk Management), ISO 50001 (Energy Management Systems), SA 8000 (Social Accountability), ISO 10002 (Customer Satisfaction - Guidelines for Complaints Handling), ISO 20400 (Sustainable Procurement) certified organization.

JV= Joint Venture




| Parameter                                     | Unit      | July 2002 | March 2023                   |
|-----------------------------------------------|-----------|-----------|------------------------------|
| OPERATIONAL PERF                              | ORMANCE   |           |                              |
| AT&C Losses                                   | %         | 53.1      | 6.34                         |
| System Reliability – ASAI -Availability Index | %         | 70        | 99.9                         |
| Transformer Failure Rate                      | %         | 11        | 0.68                         |
| Peak Load served                              | MW        | 930       | 2229<br>(as on 28 June 2022) |
| Length of Network                             | Ckt. km   | 6750      | 13790                        |
| Street Light Functionality                    | %         | 40        | 99.17                        |
| Smart Meters Installed                        | Lakh      | 0         | 3.5                          |
| CONSUMER RELATED PE                           | RFORMANCE |           |                              |
| New Connection Energisation Time              | Days      | 51.8      | 3                            |
| Meter Replacement Time                        | Days      | 25        | 3                            |
| Mean Time to Repair Faults                    | Hours     | 11        | 0.67                         |
| Consumer Satisfaction Index                   | %         | -         | 97                           |
|                                               |           |           |                              |



'Roshni' – our Brand Mascot

Towards a Greeners Tomorrow

# **AT&C Loss reduction over the years**



20 Years Turnaround Story of One of the Most Successful Private Power Distribution Utility

Towards a Greeners Tomorrow



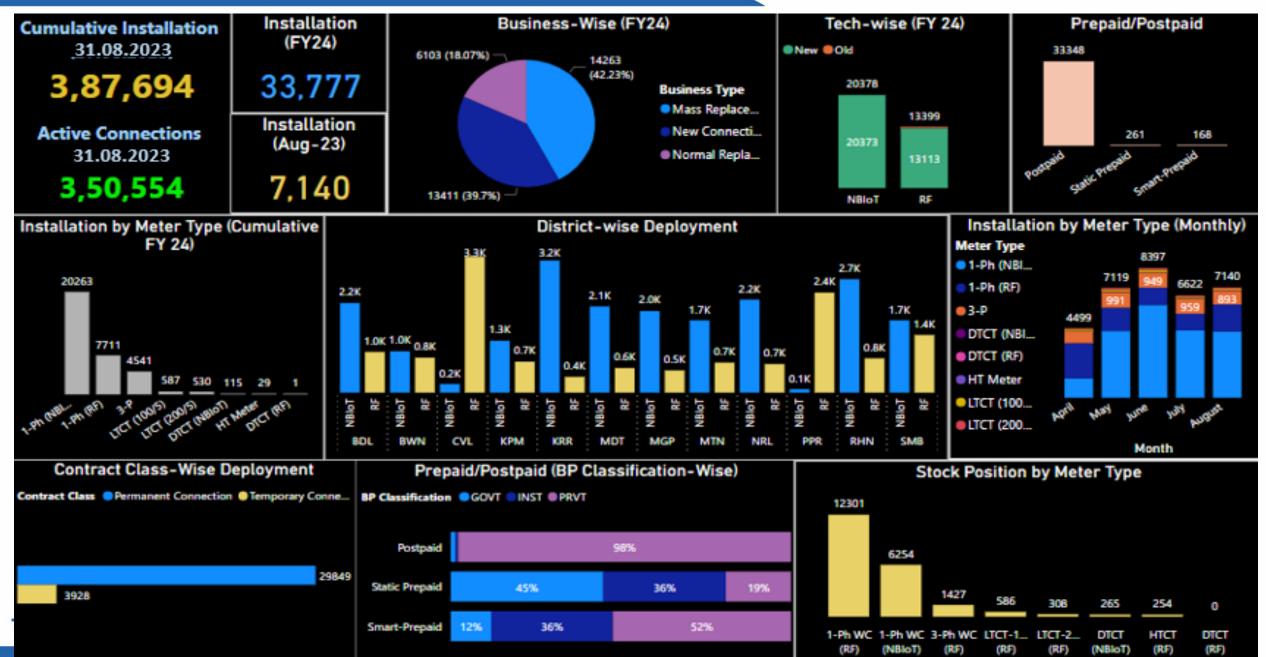
# Focus Areas (Jul-2002)

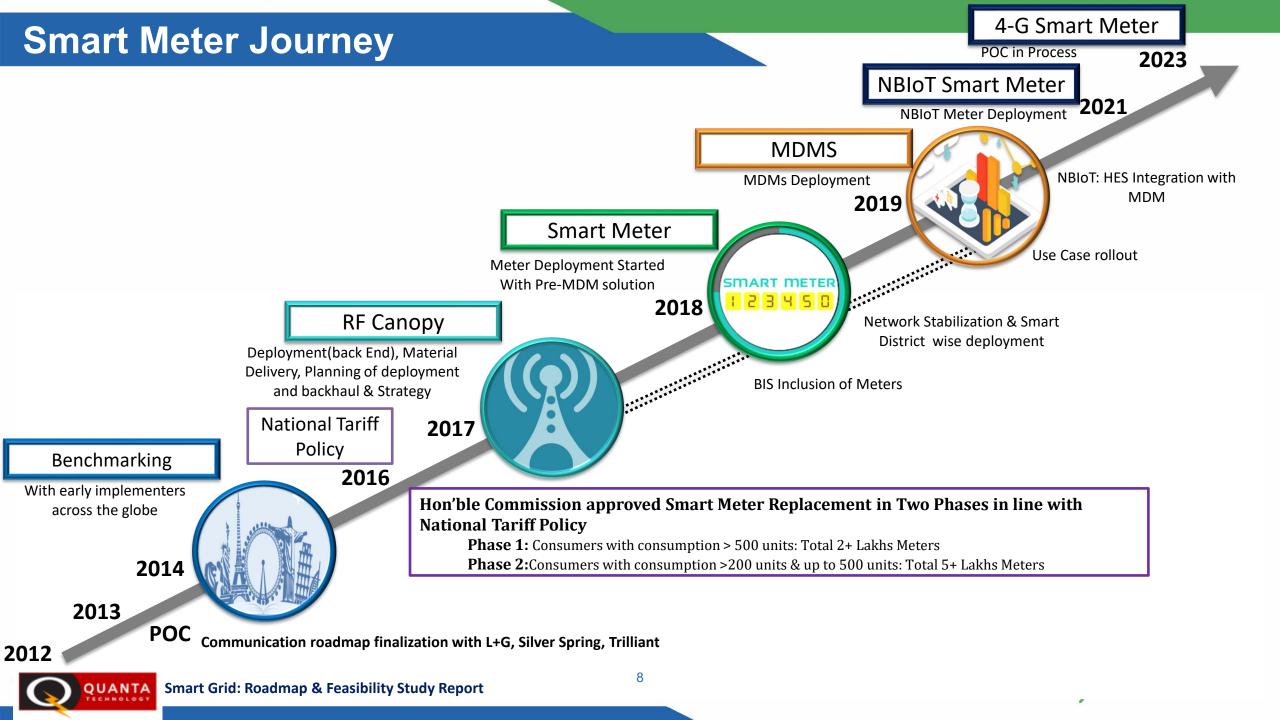




BPR/Technology Adoption/Fresh Recruitments of ET/MTs and Lateral Recruits with 7-10 years experience in this sector

AT&C= Aggregate Technical & Commercial, BPR= Business Process Re-engineering





# **AMI- Deployment & USE Case**



Towards a Greener Tomorrow

# **AMI-** Deployment Monitoring





# Details of Case Studies(Selection of Technolog

### PLC

- Stabilisation efforts too high
- skilled man power required.
- Network suitable for high count of meters per transformer.
- Impedance mismatch problem.
- Tariff policy not favouring.
- Multiple technology implementation not possible.

### GPRS

- Dependency on 3rd Party Service Provider
- Very High Rental O&M cost
- Long term approach missing
- Fast migration to new technology and Signal penetration

### RF

- Network cost independent of count of meters per transformer.
- $\checkmark$ Private Network.
- Multiple Technologies can be supported.
- **Cost effective in high Density Area**
- Self healing network.
- Terrain and Land Cover has big role in performance.
- Significant upfront cost.
- Dependency on one service provider leading to high risk.

### **Optical Fibre**

- Very fast and reliable data transfer.
- Too expensive to extend up to each customer

### Hybrid technology (for deployment) :

•RF-Mesh @ 865-67 MHz with **Optical Fiber backhaul** 



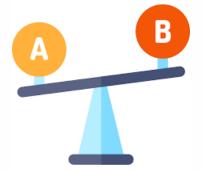
**Technologies Evaluated** 

•RF Mesh @ 2.4 GHz & 5.8 GH

•Cellular (2G,2.5G,3G,4G,LTE)

•RF Mesh @ 865-67 MHz

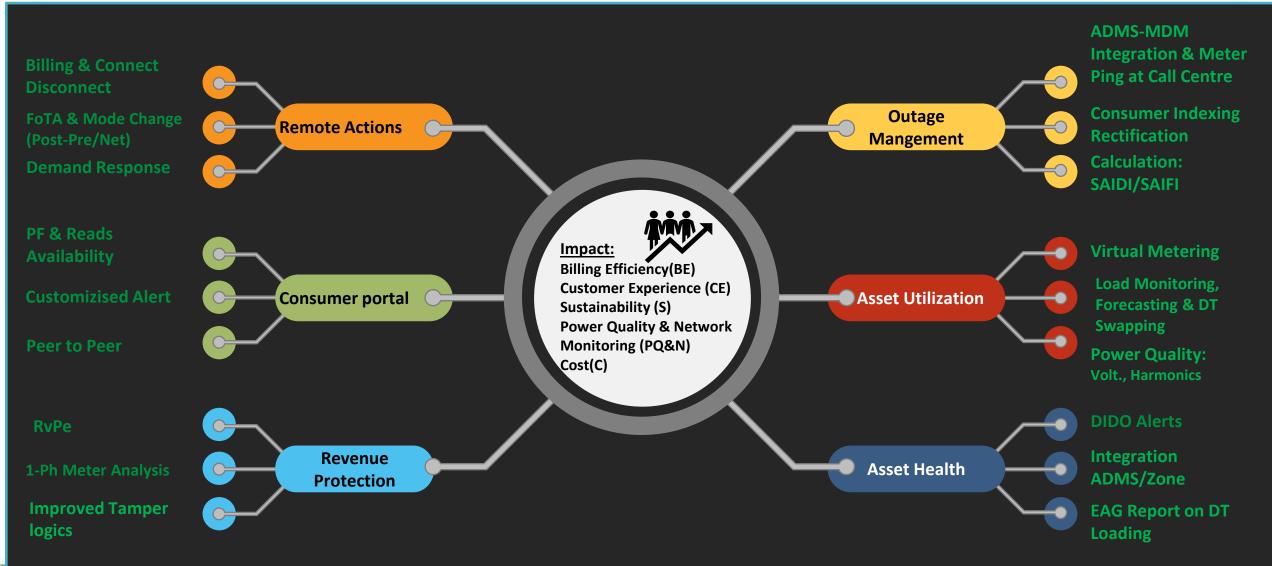
•RF (P2MP)

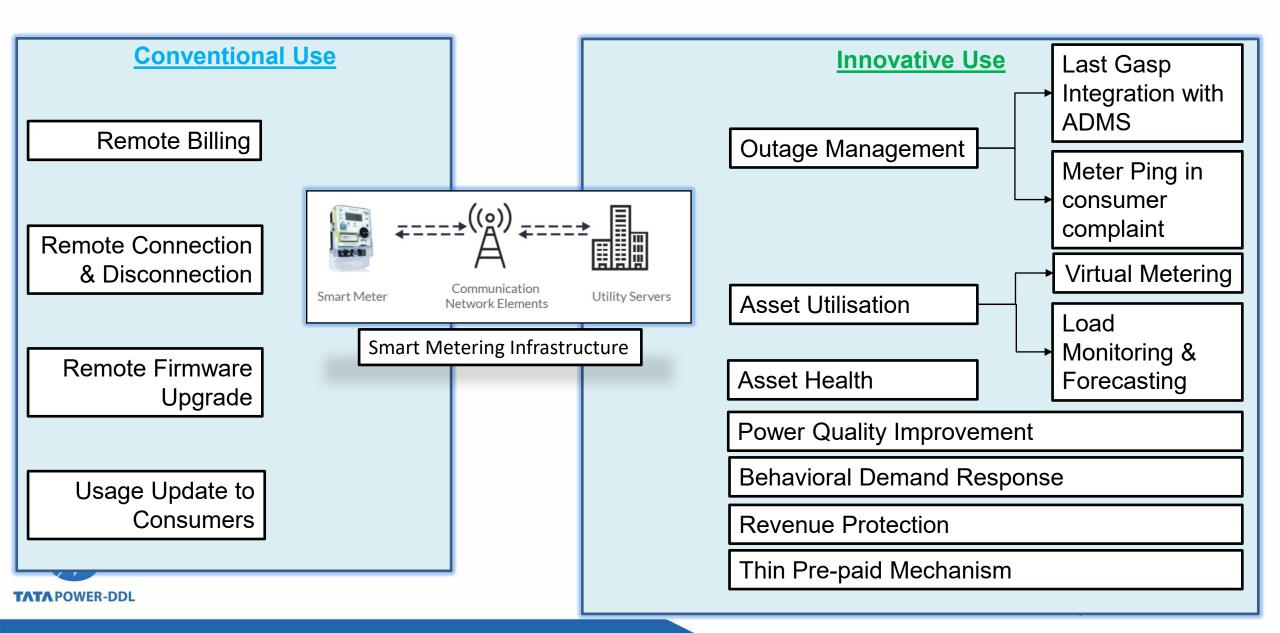

•PLC (3G,Prime)

Towards a Greener Tomorrow



# Ability to support smart grid applications


| S.No.  | Application                                            | Smart Grid        | ation tech |      |
|--------|--------------------------------------------------------|-------------------|------------|------|
| 5.110. | Application                                            | RF mesh PLC Cellu |            |      |
| 1      | Distribution Automation                                | Yes               | No         | Yes  |
| 2      | Automatic Demand Response                              | Yes               | No         | Yes  |
| 3      | Multi interval meter reading                           | Yes               | Yes        | Yes  |
| 4      | On-Demand meter reading/ Connection /<br>Disconnection | Yes               | No         | Yes  |
| 5      | Remote firmware upgrade                                | Yes               | No         | No   |
| 6      | Real time pricing                                      | Yes               | Yes        | Yes  |
| 7      | Outage Management                                      | Yes               | Yes        | Yes  |
| 8      | Support for pre-paid meters / Net meters               | Yes               | No         | Yes  |
| 9      | Street Light Management                                | Yes               | No         | Yes  |
| 10     | GSAS Backup                                            | Yes               | No         | No   |
| 11     | Upfront Cost                                           | High              | Moderate   | Low  |
| 12     | Operational Cost                                       | Low               | Low        | High |




Towards a Greener Tomorrow

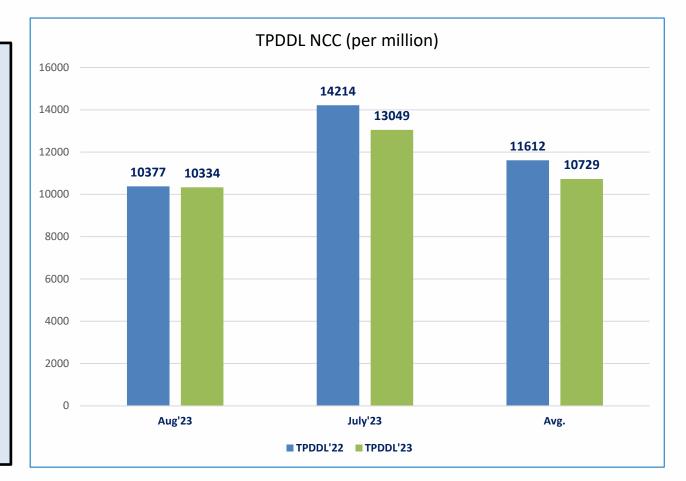
# AMI Application - Smart Meters use cases







### Last Gasp integration with ADMS:


Objective: Using the Last Gasp signal to prioritize the outage response.

Adoption in Business Process:

- To benefit consumers by improving SAIDI
- Optimize utilization of field crew

### Benefits:

- Early identification of power failure in the network.
- Saving in Operational Expenses by using manpower efficiently
- Reduction in registration of No Current Complaints.
  Ref. graph

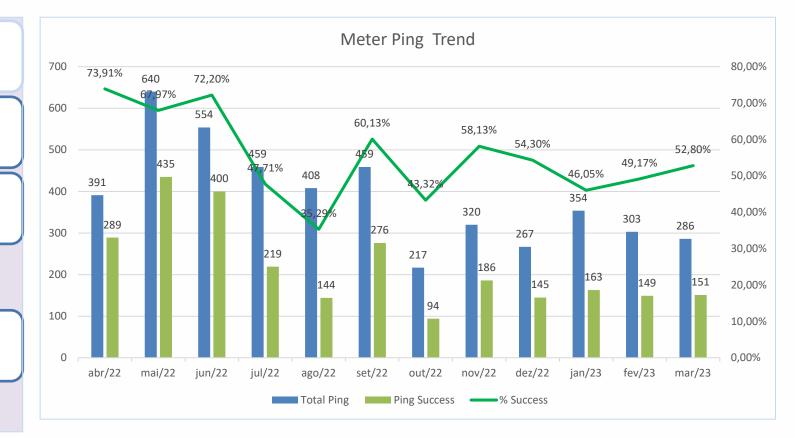




Towards a Greener Tomorrow

### Meter Ping in consumer complaint:

Objective: To register no-current complaints pertaining to utility only


### Adoption in Business Process:

- Eliminates false no-current complaint registration
- Timely information to consumers if cause of power supply failure at his end.

Benefits:

• Optimize utilization of field crew

• Saving Operational Expenses by using manpower efficiently.





Towards a Greener Tomorrow

### **Objective**

To create a prediction of risk for DTs

### Adoption in Business Process

- From period based mntc/overhaul to data based mntc/overhaul
- Embed in workflow by linking to notification process

### <u>Benefits</u>

- > Avoid both scheduled and unscheduled interruption
- Reduce opex and capex
- Reduce asset failure rate

### **Features**

- All asset data in different systems like ERP, MDM, etc integrated to create a model.
- Threshold values validated by verifying previously failed DTs

| DT Zone | Equipment | DT NO  | DT<br>Capacity<br>(in KVA) | Smart Meter<br>Status | AGE<br>Substation Description                    |      |    |           |              |    |           |                    |
|---------|-----------|--------|----------------------------|-----------------------|--------------------------------------------------|------|----|-----------|--------------|----|-----------|--------------------|
|         |           |        | (                          |                       |                                                  | Year | CR | Weightage | %<br>Loading | CR | Weightage | Interrupt<br>Total |
| 1301    | 201000704 | 3024H0 | 315                        | NO                    | HT1301-16/1/3                                    |      | 3  | 0         | -            | 3  | 0         | -                  |
| 1301    | 201000748 | 332406 | 630                        | YES                   | WHS -3 FURNITURE BLOCK                           | 20   | 3  | 30        | 69.39        | 2  | 20        | -                  |
| 1301    | 201002068 | 363214 | 630                        | YES                   | L BLOCK KIRTI NAGAR                              | 20   | 3  | 30        | 67.37        | 2  | 20        | 15                 |
| 1301    | 201004575 | 341203 | 990                        | YES                   | JAKHIRA                                          |      | 3  | 0         | 69.27        | 2  | 20        | 3                  |
| 1301    | 201004606 | 362604 | 400                        | YES                   | 69 RAMA ROAD                                     | 34   | 3  | 30        | 21.96        | 1  | 20        | 3                  |
| 1301    | 201004617 | 342603 | 990                        | YES                   | 6 BLK MOTI NGR                                   | 32   | 3  | 30        | 29.84        | 1  | 20        | 2                  |
| 1301    | 201004924 | 332512 | 400                        | YES                   | A-36 (P/M) KIRTI NAGAR                           | 32   | 3  | 30        | 61.51        | 2  | 20        | 6                  |
| 1301    | 201005142 | 332403 | 990                        | YES                   | WHS -3 FURNITURE BLOCK                           |      | 3  | 0         | 66.93        | 2  | 20        | -                  |
| 1301    | 201005234 | 3413H0 | 315                        | NO                    | 61C                                              | 20   | 3  | 30        | -            | 3  | 0         | -                  |
| 1301    | 201005300 | 3721H0 | 400                        | NO                    | 70-B BLK SIDE                                    | 27   | 3  | 30        |              | 3  | 0         | -                  |
| 1301    | 201005426 | 3724H0 | 400                        | NO                    | 51 NAJAF GARH ROAD INDUS. AREA<br>(HT1301-47/7C) | 34   | 3  | 30        |              | 3  | 0         | 1                  |
| 1301    | 201005464 | 3323H1 | 315                        | NO                    | 6/6.7                                            |      | 3  | 0         |              | 3  | 0         |                    |

|    |           |                  |    |           | - Carlos |    |                       | Parameter | Total       |           |        |
|----|-----------|------------------|----|-----------|----------|----|-----------------------|-----------|-------------|-----------|--------|
|    |           | Main Tank Oil BD |    | V         | ERF      |    | Availability<br>Index | Weightage | Total Score | Risk Inde |        |
| CR | Weightage | BDV              | CR | Weightage | ERF      | CR | Weightage             |           |             |           |        |
| 1  | 40        | 35               | 1  | 40        | 33.33    | 1  | 15                    | 1         | 45          | 15        | 33.33% |
| 1  | 40        | 33               | 1  | 40        | 33.33    | 1  | 15                    | 4         | 255         | 185       | 72.55% |
| 1  | 40        | 30               | 2  | 40        | 46.67    | 1  | 15                    | 5         | 300         | 215       | 71.67% |
| 1  | 40        | 34               | 1  | 40        | 33.33    | 1  | 15                    | 4         | 210         | 110       | 52.38% |
| 1  | 40        | 34               | 1  | 40        | 33.33    | 1  | 15                    | 5         | 300         | 160       | 53.33% |
| 1  | 40        | 32               | 1  | 40        | 33.33    | 1  | 15                    | 5         | 300         | 160       | 53.33% |
| 1  | 40        | 34               | 1  | 40        | 33.33    | 1  | 15                    | 5         | 300         | 200       | 66.67% |
| 1  | 40        | 33               | 1  | 40        | 33.33    | 1  | 15                    | 3         | 165         | 95        | 57.58% |
| 1  | 40        | 36               | 1  | 40        | 33.33    | 1  | 15                    | 2         | 135         | 105       | 77.78% |
| 1  | 40        | 34               | 1  | 40        | 33.33    | 1  | 15                    | 2         | 135         | 105       | 77.78% |
| 1  | 40        | 34               | 1  | 40        | 33.33    | 1  | 15                    | 2         | 135         | 105       | 77.78% |
| 1  | 40        | 33               | 1  | 40        | 40.00    | 1  | 15                    | 1         | 45          | 15        | 33,33% |





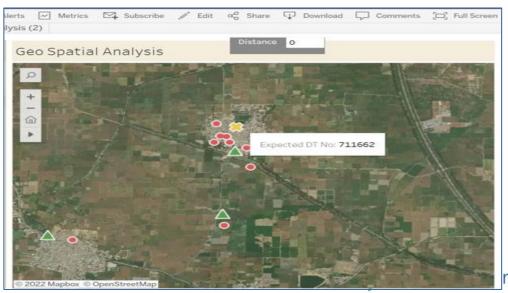
### **Objective**

Use consumer and DT smart meter outage stampings and GIS information to detect anomaly and predict correct mapping

### Adoption in Business Process

- Sustainable process to correct indexing
- Integrated to ADMS for equipment outage prediction

### **Benefits**


- Correct Indexing leading to correct loss calculation, device prediction
- Reduced effort and time over conventional ways of checking indexing

### **Features**

**TATA POWER-DDL** 

- Takes geographical co ordinates to validate predicted DT
- Rechecked with LT network availability of predicted DT's network in the vicinity

| Dutage Date      01-04-2022      Date        District      Zone      Expected DT<br>Meter      Expected DT No      Current DT        95405130      800661      800722        BAWANA      512      95402856      710701      K00717        95403157      711662      711613      K00510        N00612      95403257      K00636      K00509 | Analysis ON Time Ar | oN Time Ar | Analysis Dashboa | is Geo Spatial A | istance Analy | Report Di |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|------------------|------------------|---------------|-----------|--|
| District      Zone      Meter      Expected DT No.      Current DT        480429      95405130      800661      800722        BAWANA      512      95402856      710701      K00717        95403157      711662      711613      K00510        N00612      95403157      95403157      911662                                              | 1-05-2022           | C D314     | oate 01-04-2022  |                  | A Mismat      | DT to CA  |  |
| 95405130 800661 800722<br>BAWANA 512 95402856 710701 K00717<br>95403157 711662 711613<br>K00510<br>N00612                                                                                                                                                                                                                                  | CA                  | Current DT | Expected DT No   |                  | Zone          | District  |  |
| 95405130 800661 800722<br>BAWANA 512 95402856 710701 K00717<br>95403157 711662 711613<br>K00510<br>N00612                                                                                                                                                                                                                                  | 060022688323        |            |                  |                  |               | BAWANA 5  |  |
| BAWANA 512 95402856 710701 K00717<br>95403157 711662 711613<br>K00510<br>N00612                                                                                                                                                                                                                                                            | 060010338519        | 480429     |                  |                  |               |           |  |
| 95403157 711662 711613<br>K00510<br>N00612                                                                                                                                                                                                                                                                                                 | 060015325586        | 800722     | 800661           | 95405130         |               |           |  |
| K00510<br>N00612                                                                                                                                                                                                                                                                                                                           | 060012583278        | K00717     | 710701           | 95402856         |               |           |  |
| N00612                                                                                                                                                                                                                                                                                                                                     | 060022156081        | 711613     | 711662           | 95403157         |               |           |  |
|                                                                                                                                                                                                                                                                                                                                            | 060002098022        | K00510     |                  |                  |               |           |  |
| 95403257 K00636 K00509                                                                                                                                                                                                                                                                                                                     | 060000488902        | N00612     |                  |                  |               |           |  |
| 95403257 K00636 K00509                                                                                                                                                                                                                                                                                                                     | 060001388440        |            |                  |                  |               |           |  |
| 95403257 K00636 K00509                                                                                                                                                                                                                                                                                                                     | 060012559500        |            |                  |                  |               |           |  |
| 95403257 K00636 K00509                                                                                                                                                                                                                                                                                                                     | 060018144018        |            |                  |                  |               |           |  |
| 95403257 K00636 K00509                                                                                                                                                                                                                                                                                                                     | 060021532035        |            |                  |                  |               |           |  |
| 95403257 K00636 K00509                                                                                                                                                                                                                                                                                                                     | 060022375269        |            |                  |                  |               |           |  |
| 95403257 K00636 K00509                                                                                                                                                                                                                                                                                                                     | 060027305568        |            |                  |                  |               |           |  |
|                                                                                                                                                                                                                                                                                                                                            | 060000476345        | K00509     | K00636           | 95403257         |               |           |  |
|                                                                                                                                                                                                                                                                                                                                            | 060002114415        |            |                  |                  |               |           |  |
|                                                                                                                                                                                                                                                                                                                                            | 060006975829        |            |                  |                  |               |           |  |
|                                                                                                                                                                                                                                                                                                                                            | 060009862396        |            |                  |                  |               |           |  |
|                                                                                                                                                                                                                                                                                                                                            | 060010320343        |            |                  |                  |               |           |  |



### **Asset Utilization**

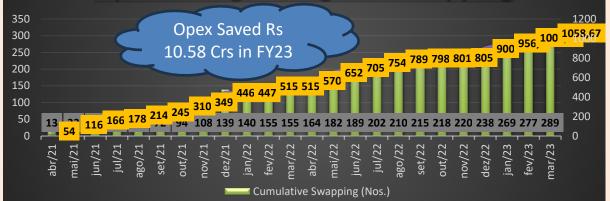
### **Asset Swapping**

Objective: Adding efficiency to the system by swapping under-loaded assets with overloaded assets

Adoption in Business Process:

- Deferral of Capital Investment
- > Optimum utilization of Network Benefits:
- From Apr'21 to Jul'22, 202 nos. of Distribution Transformer swapped to create the margin in the network for sanctioning load
- Fire incidents due to overloading could be ruled out.

### Power BI Veeramuruganandan DT par dbrd | Data updated 5/12/22 V = ≪ P File ∨ → Export ∨ Pages A Share M Chat in Teams C Get insights 6 Home Select all **City South** East Suburb North Subur Summary \$ Favorites E wide viz CSS 4/30/2022 Recent Recent Check meter + Create Select all 12 to 18 C Dataset Clear all Filters Same of Solution a S Goals unit of CSS by LPEATE Select al CSS Admiti. > 20% E Apps Mag of KWA % art rated KWA 87.27% 10-15 % e-click in shiV firmur 15 - 20 % e<sup>R</sup> Shared with me D Learn ic ad alath % Select all Workspace > 80% 30 - 50 % (B) My workspace 50 70 9 70 80 % < 30 %


### Virtual Metering

Objective: Planning Network capacity in advance by using data from Smart Meters installed under unmetered distribution transformers, feeders and Solar generation

Adoption in Business Process:

- Proper Planning of network helps in sanctioning load timely.
- Optimum utilization of Network

### **Opex Saving through DT Swapping**



### Towards a Greeners Tomorrow

### TATA POWER-DDL

### **Asset Health**

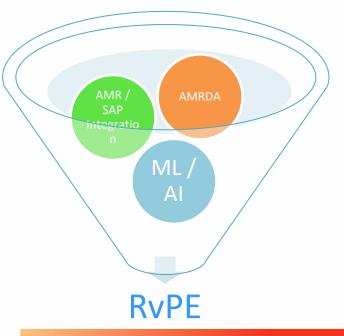
Objective: To protect the health of transformers and other assets by getting digital input and digital output signals through smart meters.

### Adoption in Business Process:

- Daily alert report on low oil level
- Prevents assets from fire hazards and theft
- Prevents theft of internal components of transformers (oil etc.)

### Benefits:

- Prevented DT oil theft in 02 cases
- Prevented breakdown in 12 cases owing to low oil level


### Temperature Event Smart Meter | DI/DO | Status

| Months | Total No. DT Oil Refilled | Total Cost Savings(Lacs) |
|--------|---------------------------|--------------------------|
| Jan'23 | 5                         | 20.56                    |
| Feb'23 | 7                         | 31.97                    |
| Mar'23 | 1                         | 7.13                     |
| Apr'23 | 3                         | 12.84                    |



## **AT&C Reduction**

### **Revenue Protection Module**



Description- Revenue Protection Module for identification of potential electricity theft/pilferage using smart/AMR enabled meter data through predefined system based logics as well as machine learning.



### **RvPE additional features in comparison to AMRDA**

- AMR / SAP Integration, Industry Profiling, CA based Analysis based on multiple attributes
- AI / ML Integration subjected to development of first point
- System based Logic efficiency can be monitored
- Instant Adhoc Analysis of any case

•

•

- Threshold values can be changed at user level
- System based processing of cases and reports availability
- Auto generation of notification number of referred cases





### Logics replicated in RvPE from AMRDA

### New Logics incorporated in RvPE: Delta over AMRDA

| Sr no | Logic Name                                                     |  |  |  |  |
|-------|----------------------------------------------------------------|--|--|--|--|
| 1     | Assessed Consumption for Industrial and Commercial Connections |  |  |  |  |
| 2     | Assessed Consumption for Domestic Connections                  |  |  |  |  |
| 3     | Voltage Failure                                                |  |  |  |  |
| 4     | Power Failure                                                  |  |  |  |  |
| 5     | CT overload                                                    |  |  |  |  |
| 6     | Data Corruption                                                |  |  |  |  |
| 7     | Low Power factor                                               |  |  |  |  |
| 8     | Potential missing with Load Running                            |  |  |  |  |
| 9     | Current Missing                                                |  |  |  |  |
| 10    | Neutral Disturbance                                            |  |  |  |  |
| 11    | Current Reversal                                               |  |  |  |  |
| 12    | Magnet                                                         |  |  |  |  |
| 13    | Cover Open                                                     |  |  |  |  |
| 14    | Direct theft logic through neutral current                     |  |  |  |  |
| 15    | High Voltage                                                   |  |  |  |  |
| 16    | Current imbalance                                              |  |  |  |  |
| 17    | Misuse                                                         |  |  |  |  |
| 18    | Drop in consumption with constant MDI                          |  |  |  |  |



Towards a Greeners Tomorrow

# Theft control and AT&C improvements

### **Case 1: Abnormal Hike in CP**



### **Case 4: Cover Open with High Neutral Current**



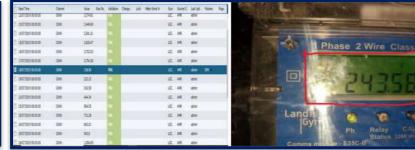
**Case 7: Load Without Potential** 

igned Power Facto

- kW Date & Tim

- kVA Date & Tin

MD kVA, Imp


mulative Energy - kWh Import/Forwarded

009237 Endpoint s/n 1348016852(5059

| Name                                          | Value               |
|-----------------------------------------------|---------------------|
| Real Time Clock -Date and Time                | 02/14/2019 13:22:17 |
| Voltage                                       | 247.31 V            |
| Phase Current                                 | 0.872 A             |
| Neutral Current                               | 1.566 A             |
| Signed Power Factor                           | -1.000              |
| Frequency                                     | 50.09 Hz            |
| Apparent Power - kVA                          | 0.189 kVA           |
| Signed Active Power - kW (+ Forward -Reverse) | 0.189 kW            |
| Cumulative Energy - kWh Import/Forwarded      | 905.587 kWh         |
| Cumulative Energy - kVAh Import/Forwarded     | 912.294 kVAh        |
| MD kW, Import/Forwarded                       | 3.650 kW            |
| MD - kW Date & Time                           | 02/02/2019 10:00:00 |
| MD kVA, Import/Forwarded                      | 3.676 kVA           |
| MD - kVA Date & Time                          | 02/02/2019 10:00:00 |

# **Case 2 : Zero/Low consumption** Block-kWh (kWh) 0.8 0.4

### **Case 5: Reading Reversal**



### **Case 8: Multiple Current related events**




AvgCurrent-R (A) AvgCurrent-Y (A) AvgCurrent-B (A

2/05/2019 11:30:0

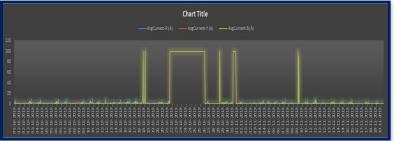

0.128 kW

567.503 kW 599.578 kVA 2.410 kW

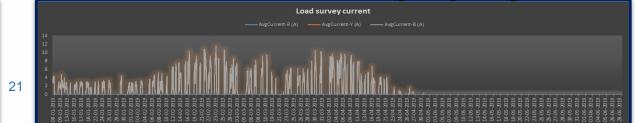
2.416 kVA



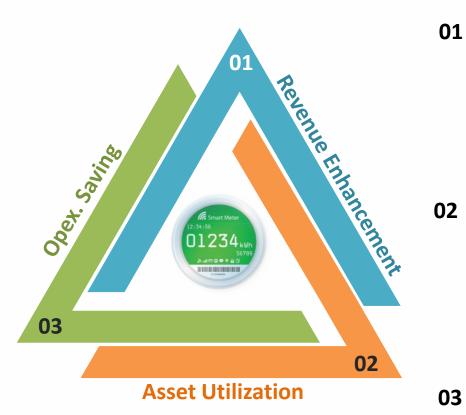





### **Case 6: Abnormal High Current**


AvgCurrent-R (A)

150 100 50


### **Case 9: Magnet Tamper**



### **Case 11: Abnormal Frequency Tamper**



### **Smart Meter: Cumulative Benefits**



TATA POWER-DDL

### <u>FY 20-21 & FY 21-22: ₹ 29.55 Cr</u>

### Revenue Enhanced:₹ 4.76 Cr

14K Meters C&I upgraded to 4 registers.
 ✓ Enhaced unit sell amount:: ₹ 4.76 Cr

214 K Consumers= Smart 14K + Non Smart 200K

### Asset Utilization: ₹ 6.48 Cr

- DT Swapping
- Switching to Smart Prepaid Meters
  - Conventional Paid Meter Cost > Smart Prepaid
  - Conventional Prepaid meter having transactional charges to meter OEM
- DIDO events attended :: 8no's with low oil level

### Opex Saved: ₹ 18.31 Cr

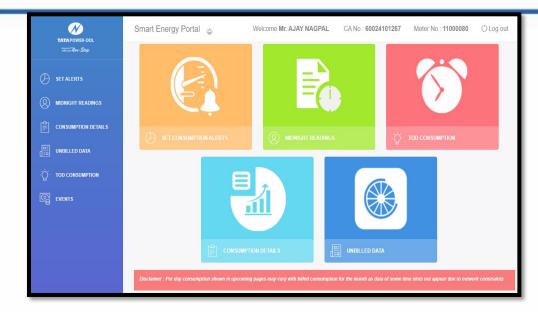
- Saved opex on different activities:
  - ✓ Reading
  - ✓ AMR
  - ✓ Connect Disconnect
  - ✓ Call Centre Follow-up calls reduction
  - ✓ Billing Complaint Reduction
  - ✓ OTA Firmware₂upgrade

### <u>FY 23-24 (YTM): ₹ 19 Cr</u>

### **Meters replaced for KVAh Billing**

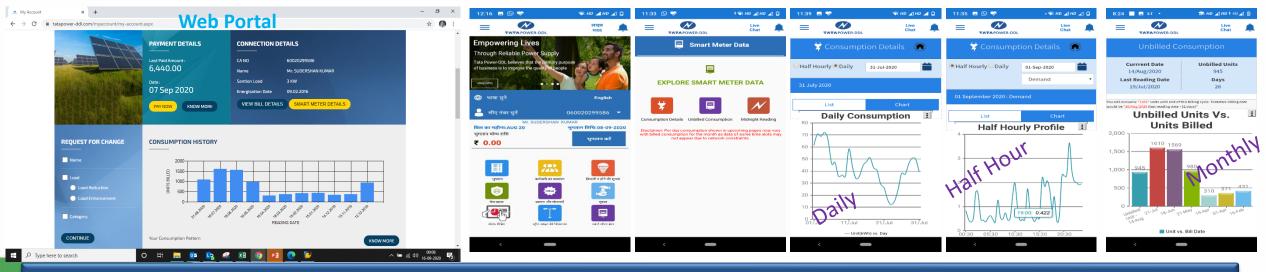
• Cumulative benefits is Rs 7 Cr for New meters deployed and Rs. 6 Cr. For previously deployed (having registers updated)

### Asset Utilization: ₹ 7.03 Cr


- DT Swapping
- Switching to Smart Prepaid Meters
  - Conventional Paid Meter Cost > Smart Prepaid
  - Conventional Prepaid meter having transactional charges to meter OEM
- DIDO events attended :: 6 nos. with low oil level

### Opex Saved: ₹ 8 Cr

- Saved opex on different activities:
  - ✓ Reading
  - ✓ AMR
  - ✓ Connect Disconnect
  - ✓ Call Centre Follow-up calls reduction
  - ✓ Billing Complaint Reduction
  - ✓ OTA Firmware upgrade


# Consumer benefits in App, VAS









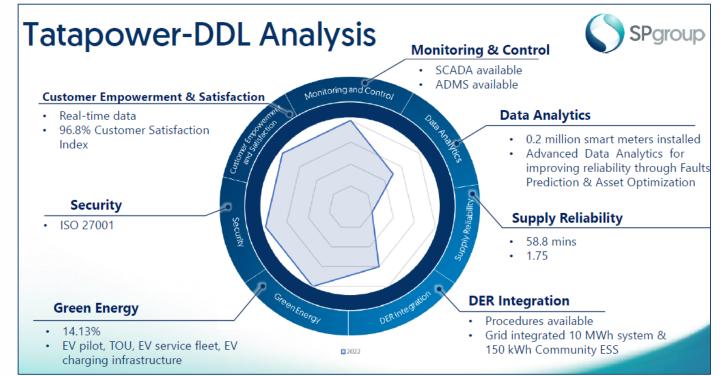


A. Energy Usage B. Demand Comparison

**C. Customized Alerts** 

rts D. Pre Paid Balance

ce E. TOD for Industrial & Comm. Users


# Smart Grid Index 2022 (conducted by Singapore Power)

- Benchmarks a total of 94 utilities across 39 countries / markets



| Utility            | Country/Market | Score | + / - (%) | Best Practices |
|--------------------|----------------|-------|-----------|----------------|
| Enedis             | FRA            | 98.2  | 1.8       | <u> </u>       |
| TaiPower           | TWN            | 94.6  | -         | <b>00000</b>   |
| UKPN               | GBR            | 94.6  | -         | <b>0000</b>    |
| ConEd              | USA            | 92.9  | -1.8      | <b>000</b>     |
| WPD                | GBR            | 92.9  | -         | <b>00000</b>   |
| CitiPower          | AUS            | 91.1  | -1.8      | <b>0000</b>    |
| DEWA               | ARE            | 89.3  | -         | <b>0000</b>    |
| SP Energy Networks | GBR            | 89.3  | 1.8       | <b>0000</b>    |
| SDGE               | USA            | 87.5  | -         | <b>80000</b>   |
| FPL                | USA            | 85.7  | -         | <u>800</u>     |
| Northern Powergrid | GBR            | 85.7  | 1.8       | 00             |
| SCE                | USA            | 85.7  | -         | ଡ଼ଡ଼ଢ଼ଡ଼ଡ଼     |
| Stedin             | NLD            | 85.7  | -         | 8              |
| ComEd              | USA            | 83.9  | -         | <u>800</u>     |
| PG&E               | USA            | 83.9  | -3.6      | <b>00000</b>   |
| ENWL               | GBR            | 82.1  | -3.6      | <b>@</b> @     |
| Jemena             | AUS            | 82.1  | 1.8       | <u> </u>       |
| PEPCO              | USA            | 82.1  | 5.4       | 00             |
| Powercor           | AUS            | 82.1  | -         | <b>600</b>     |
| Radius             | DNK            | 82.1  | -3.6      | <b>@@</b>      |
| United Energy      | AUS            | 82.1  | -         | 00             |
| Chubu              | JPN            | 80.4  | 8.9       | 000            |
| Hydro Ottawa       | CAN            | 80.4  | 1.8       | 60             |
| LADWP              | USA            | 80.4  | -         | <b>200</b>     |
| SSEN               | GBR            | 80.4  | -         | 00             |
| State Grid Beijing | CHN            | 80.4  | -         | 02             |
| Tata power-DDL     |                | 80.4  |           | <u></u>        |
| TEPCO              | JPN            | 80.4  | -1.8      | 00             |

# Tata Power-DDL is the 1<sup>st</sup> Indian Utility to be positioned among Top 25 Utilities across the globe



24



# Energy Storage System



# **Energy Storage Systems**





### BATTERY ENERGY STORAGE SYSTEM

TATA Power-DDL has installed South Asia's First 10 MW Battery Energy Storage System (BESS) at Rohini Grid-24 to provide better peak load management, system flexibility and reliability to more than 2 million consumers.

It was a pilot project with cost of Rs 62 Cr having timeline of 1.25 Years.

This was done in collaboration with AES and Mitsubishi Corporation.

### **COMMUNITY ENERGY STORAGE SYSTEM**

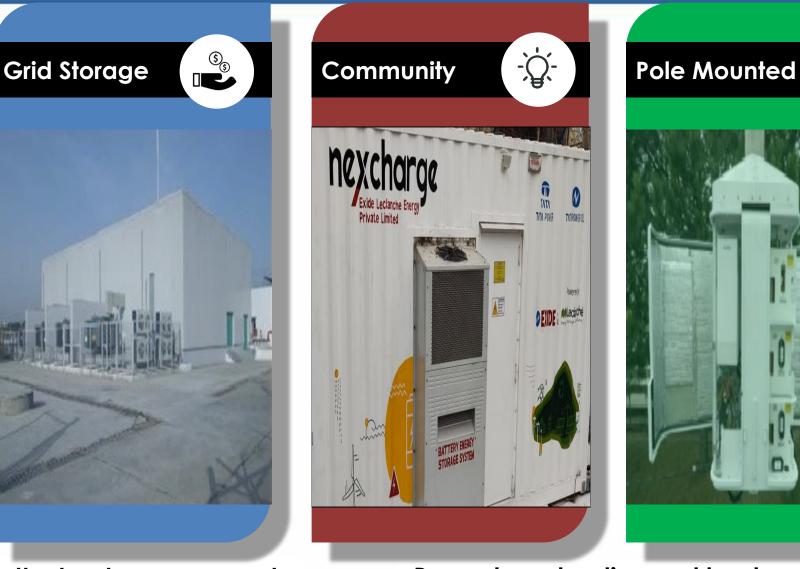
Tata Power Delhi Distribution collaborates with Nexcharge to power up India's First Grid Connected Community Energy Storage System





# **Storage Initiatives**




-ŷ

Tomorrow

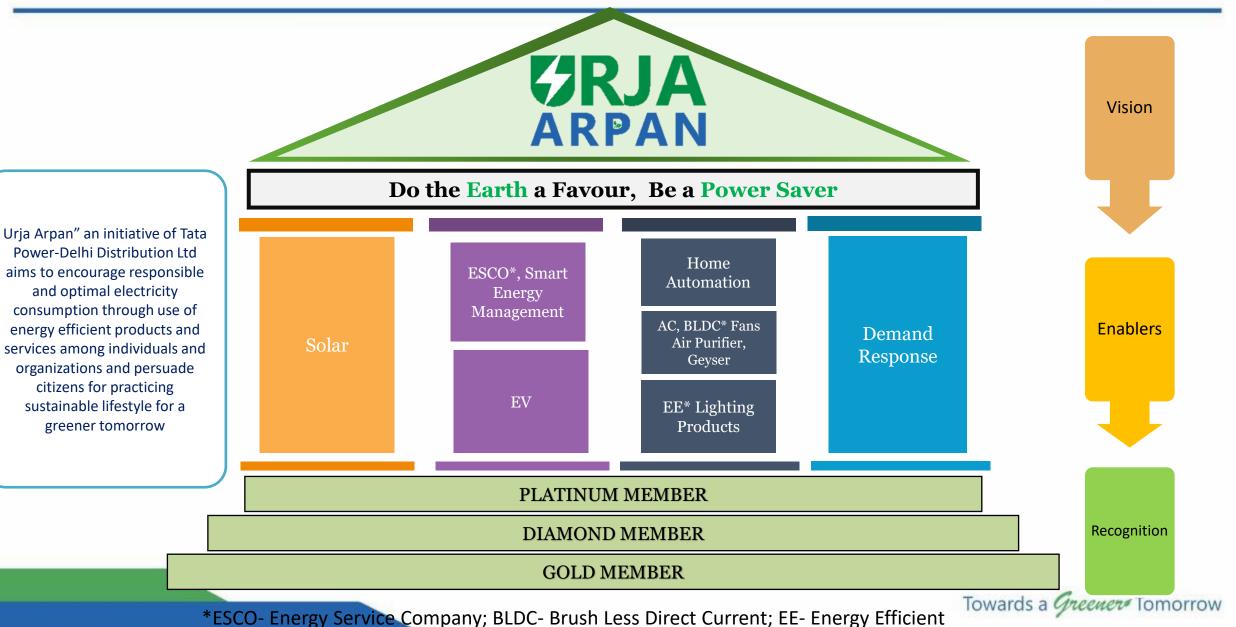
10 MWh energy storage system at Tata Power Delhi Distribution's Rohini Substation (in partnership with AES, Mitsubishi)

Community storage: 15-20% of the Distribution Transformer Capacity. 630kVA DT - 150 kW/528KWh Storage (in partnership with Exide & Leclanche)

First of a kind pilot project on Pole Mounted Battery Energy Storage (Under Development 20KW/20KWh)

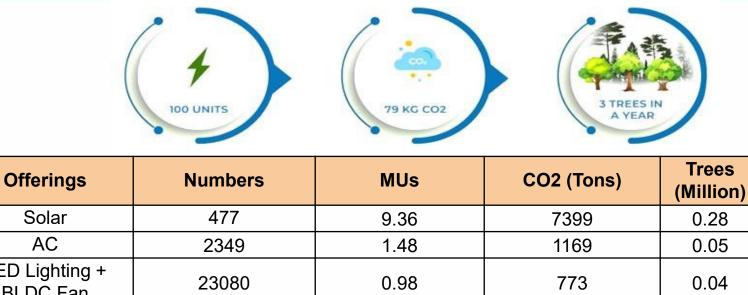


27

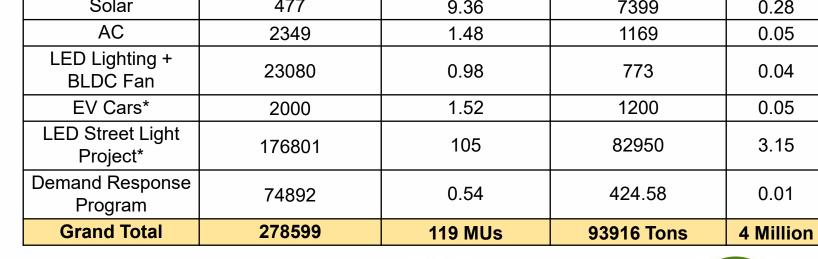



Better load management and system flexibility

Prevent overloading and backup during exigency condition


# Urja Arpan Framework






# Urja Arpan Contribution(FY23)













119 MUs

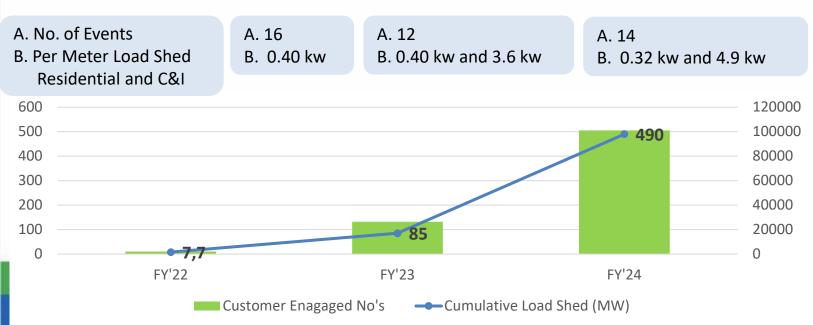


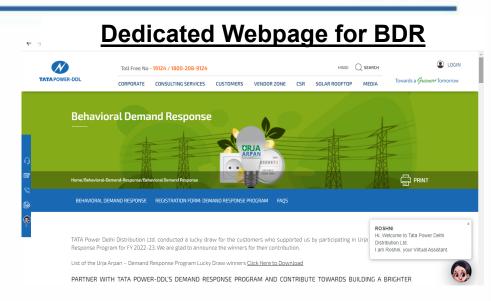









# **Behavioral Demand Response Program**



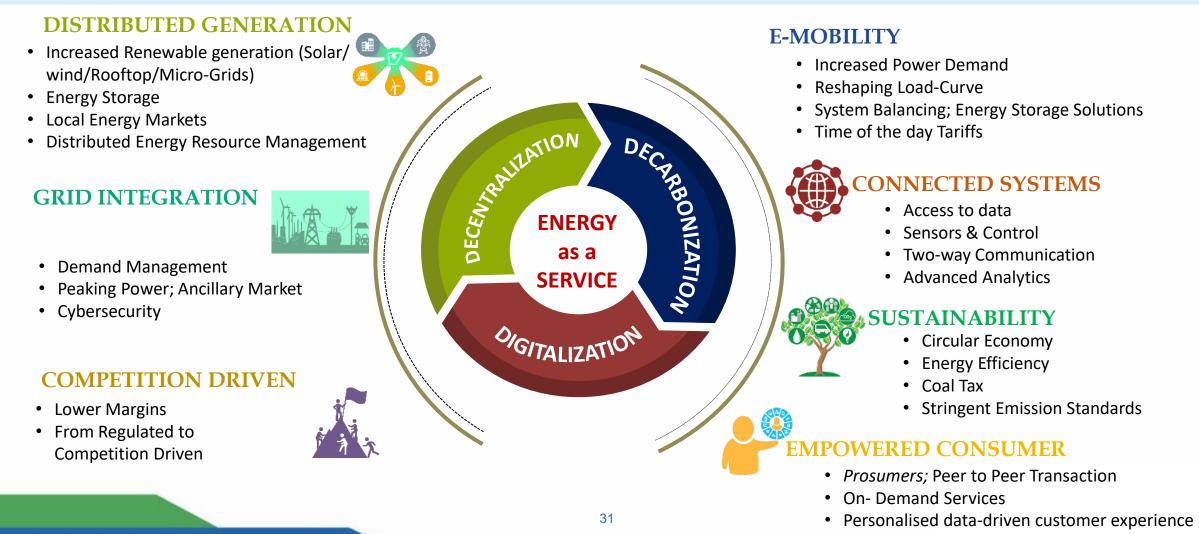

### **Demand Response :-**

It is an **electric load management program** which seeks to manage electricity demand at consumer end by encouraging them to increase or decrease their consumption using incentives (Critical Peak Rebate) or penalties (Critical Peak Pricing). Helps to bring in Demand side flexibility and Optimization of power procurement

### YoY Results of BDR:- (Target- 500 MW load shed)



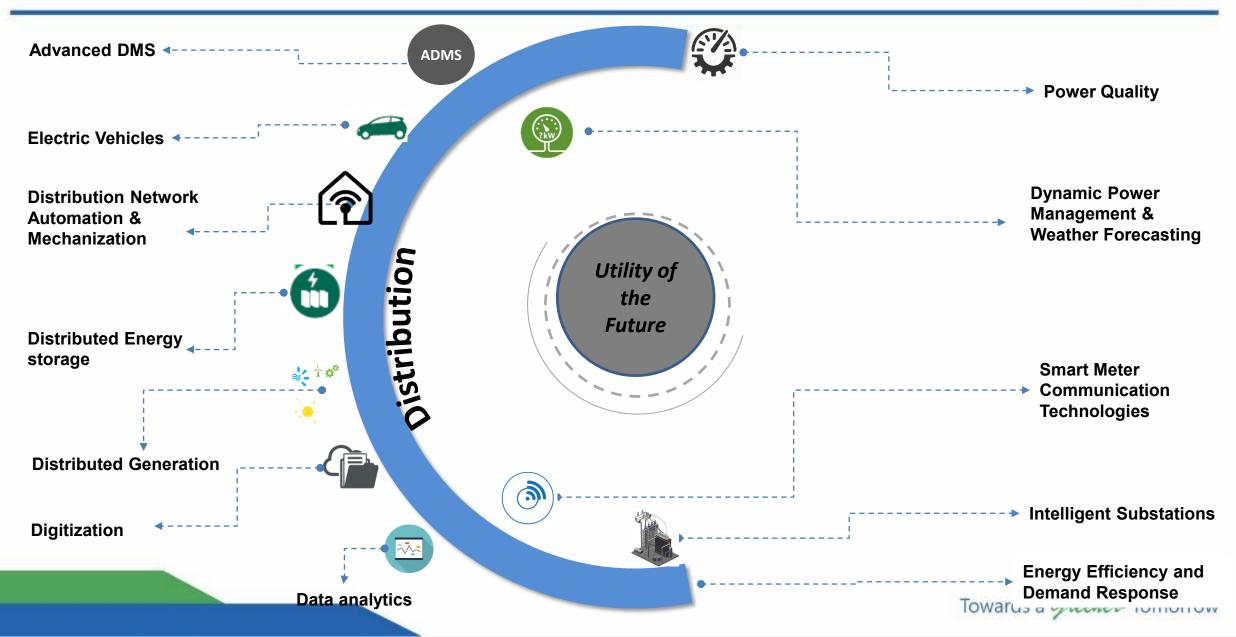



# areeners Tomorrow

### **Recognition of Participating Customers**

# The Changing Paradigm: Energy-A Service




Decentralization, Decarbonization & Digitalization are reshaping power sector, requiring the shift in business models from traditional utility centric to consumer centric.



• Other utility services

# Tata Power-DDL: Utility of the Future





# **Brief Profile**



Mr. Subhadip Raychaudhuri is an accomplished Indian professional with over 24 years of experience in power distribution utilities. He holds a Bachelor of Technology degree in Electrical Engineering and an MBA in Finance. Mr. Raychaudhuri has been an active member of ET:13 and the Bureau of Indian Standards, contributing significantly to the development of standards and policies for the power sector in India.

Currently, Mr. Raychaudhuri works as the Head (MMG and AMI Applications) at Tata Power Delhi Distribution Limited (TPDDL), where he oversees the implementation of smart metering solutions to improve power distribution efficiency and reliability in the region.



His broad range of expertise includes metering, protection, testing, and specification design of distribution systems and substations. Mr. Raychaudhuri's involvement in designing and implementing various projects, from conceptualization to commissioning, has been instrumental in their success.





# TATA POWER-DDL

Towards a Greener Tomorrow

# **Thank You**